我们向传感器独立性(Sensei)介绍了一种新型神经网络架构 - 光谱编码器 - 通过该传感器独立性(Sensei) - 通过其中具有不同组合的光谱频带组合的多个多光谱仪器可用于训练广义深度学习模型。我们专注于云屏蔽的问题,使用几个预先存在的数据集,以及Sentinel-2的新的自由可用数据集。我们的模型显示在卫星上实现最先进的性能,它受过训练(Sentinel-2和Landsat 8),并且能够推断到传感器,它在训练期间尚未见过Landsat 7,每\ 'USAT-1,和Sentinel-3 SLST。当多种卫星用于培训,接近或超越专用单传感器型号的性能时,模型性能显示出改善。这项工作是激励遥感社区可以使用巨大各种传感器采取的数据的动机。这不可避免地导致标记用于不同传感器的努力,这限制了深度学习模型的性能,因为他们需要最佳地执行巨大的训练。传感器独立性可以使深度学习模型能够同时使用多个数据集进行培训,提高性能并使它们更广泛适用。这可能导致深入学习方法,用于在板载应用程序和地面分段数据处理中更频繁地使用,这通常需要模型在推出时或之后即将开始。
translated by 谷歌翻译
Dynamic Movement Primitives (DMP) have found remarkable applicability and success in various robotic tasks, which can be mainly attributed to their generalization and robustness properties. Nevertheless, their generalization is based only on the trajectory endpoints (initial and target position). Moreover, the spatial generalization of DMP is known to suffer from shortcomings like over-scaling and mirroring of the motion. In this work we propose a novel generalization scheme, based on optimizing online the DMP weights so that the acceleration profile and hence the underlying training trajectory pattern is preserved. This approach remedies the shortcomings of the classical DMP scaling and additionally allows the DMP to generalize also to intermediate points (via-points) and external signals (coupling terms), while preserving the training trajectory pattern. Extensive comparative simulations with the classical and other DMP variants are conducted, while experimental results validate the applicability and efficacy of the proposed method.
translated by 谷歌翻译
Mapping the seafloor with underwater imaging cameras is of significant importance for various applications including marine engineering, geology, geomorphology, archaeology and biology. For shallow waters, among the underwater imaging challenges, caustics i.e., the complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface, is likely the most crucial one. Caustics is the main factor during underwater imaging campaigns that massively degrade image quality and affect severely any 2D mosaicking or 3D reconstruction of the seabed. In this work, we propose a novel method for correcting the radiometric effects of caustics on shallow underwater imagery. Contrary to the state-of-the-art, the developed method can handle seabed and riverbed of any anaglyph, correcting the images using real pixel information, thus, improving image matching and 3D reconstruction processes. In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics". Then, exploits the 3D geometry of the scene to achieve a pixel-wise correction, by transferring appropriate color values between the overlapping underwater images. Moreover, to fill the current gap, we have collected, annotated and structured a real-world caustic dataset, namely R-CAUSTIC, which is openly available. Overall, based on the experimental results and validation the developed methodology is quite promising in both detecting caustics and reconstructing their intensity.
translated by 谷歌翻译
Automatic fake news detection is a challenging problem in misinformation spreading, and it has tremendous real-world political and social impacts. Past studies have proposed machine learning-based methods for detecting such fake news, focusing on different properties of the published news articles, such as linguistic characteristics of the actual content, which however have limitations due to the apparent language barriers. Departing from such efforts, we propose FNDaaS, the first automatic, content-agnostic fake news detection method, that considers new and unstudied features such as network and structural characteristics per news website. This method can be enforced as-a-Service, either at the ISP-side for easier scalability and maintenance, or user-side for better end-user privacy. We demonstrate the efficacy of our method using data crawled from existing lists of 637 fake and 1183 real news websites, and by building and testing a proof of concept system that materializes our proposal. Our analysis of data collected from these websites shows that the vast majority of fake news domains are very young and appear to have lower time periods of an IP associated with their domain than real news ones. By conducting various experiments with machine learning classifiers, we demonstrate that FNDaaS can achieve an AUC score of up to 0.967 on past sites, and up to 77-92% accuracy on newly-flagged ones.
translated by 谷歌翻译
Verifying the input-output relationships of a neural network so as to achieve some desired performance specification is a difficult, yet important, problem due to the growing ubiquity of neural nets in many engineering applications. We use ideas from probability theory in the frequency domain to provide probabilistic verification guarantees for ReLU neural networks. Specifically, we interpret a (deep) feedforward neural network as a discrete dynamical system over a finite horizon that shapes distributions of initial states, and use characteristic functions to propagate the distribution of the input data through the network. Using the inverse Fourier transform, we obtain the corresponding cumulative distribution function of the output set, which can be used to check if the network is performing as expected given any random point from the input set. The proposed approach does not require distributions to have well-defined moments or moment generating functions. We demonstrate our proposed approach on two examples, and compare its performance to related approaches.
translated by 谷歌翻译
We propose AstroSLAM, a standalone vision-based solution for autonomous online navigation around an unknown target small celestial body. AstroSLAM is predicated on the formulation of the SLAM problem as an incrementally growing factor graph, facilitated by the use of the GTSAM library and the iSAM2 engine. By combining sensor fusion with orbital motion priors, we achieve improved performance over a baseline SLAM solution. We incorporate orbital motion constraints into the factor graph by devising a novel relative dynamics factor, which links the relative pose of the spacecraft to the problem of predicting trajectories stemming from the motion of the spacecraft in the vicinity of the small body. We demonstrate the excellent performance of AstroSLAM using both real legacy mission imagery and trajectory data courtesy of NASA's Planetary Data System, as well as real in-lab imagery data generated on a 3 degree-of-freedom spacecraft simulator test-bed.
translated by 谷歌翻译
The de facto standard of dynamic histogram binning for radiomic feature extraction leads to an elevated sensitivity to fluctuations in annotated regions. This may impact the majority of radiomic studies published recently and contribute to issues regarding poor reproducibility of radiomic-based machine learning that has led to significant efforts for data harmonization; however, we believe the issues highlighted here are comparatively neglected, but often remedied by choosing static binning. The field of radiomics has improved through the development of community standards and open-source libraries such as PyRadiomics. But differences in image acquisition, systematic differences between observers' annotations, and preprocessing steps still pose challenges. These can change the distribution of voxels altering extracted features and can be exacerbated with dynamic binning.
translated by 谷歌翻译
与语音界面进行互动以查询问答(QA)系统越来越流行。通常,质量保证系统依靠通道检索来选择候选上下文并阅读理解以提取最终答案。尽管人们一直在关注质量检查系统的阅读理解部分,以防止自动语音识别(ASR)模型引入的错误,但段落检索部分仍未开发。但是,此类错误会影响通过检索的性能,从而导致端到端的性能较低。为了解决这一差距,我们通过合成的ASR噪声增强了两个现有的大规模通道排名和开放域QA数据集,并研究了ASR噪声的问题,并研究词汇和密度捕捞器的鲁棒性。此外,我们研究了不同领域的数据增强技术的普遍性。每个域都是不同的语言方言或口音。最后,我们创建了一个新数据集,其中包含人类用户提出的问题,并使用其转录表明,在处理自然ASR噪声而不是合成ASR噪声时,检索性能会进一步降低。
translated by 谷歌翻译
在本文中,我们为自主机器人提供了一种新型的模型预测控制方法,受到任意形式的不确定性。拟议的风险感知模型预测路径积分(RA-MPPI)控制利用条件价值(CVAR)度量来为安全关键的机器人应用生成最佳控制动作。与大多数现有的随机MPC和CVAR优化方法不同,这些方法将原始动力学线性化并将控制任务制定为凸面程序,而拟议的方法直接使用原始动力学,而无需限制成本函数或噪声的形式。我们将新颖的RA-MPPI控制器应用于自动驾驶汽车,以在混乱的环境中进行积极的驾驶操作。我们的仿真和实验表明,与基线MPPI控制器相比,提出的RA-MPPI控制器可以达到大约相同的圈时间,而碰撞的碰撞明显少得多。所提出的控制器以高达80Hz的更新频率执行在线计算,利用现代图形处理单元(GPU)来进行多线程轨迹以及CVAR值的生成。
translated by 谷歌翻译
我们介绍了第一个机器学习引力波搜索模拟数据挑战(MLGWSC-1)的结果。在这一挑战中,参与的小组必须从二进制黑洞合并中识别出复杂性和持续时间逐渐嵌入在逐渐更现实的噪声中的引力波信号。 4个提供的数据集中的决赛包含O3A观察的真实噪声,并发出了20秒的持续时间,其中包含进动效应和高阶模式。我们介绍了在提交前从参与者未知的1个月的测试数据中得出的6个输入算法的平均灵敏度距离和运行时。其中4个是机器学习算法。我们发现,最好的基于机器学习的算法能够以每月1个的错误警报率(FAR)的速度(FAR)实现基于匹配过滤的生产分析的敏感距离的95%。相反,对于真实的噪音,领先的机器学习搜索获得了70%。为了更高的范围,敏感距离缩小的差异缩小到某些数据集上选择机器学习提交的范围$ \ geq 200 $以优于传统搜索算法的程度。我们的结果表明,当前的机器学习搜索算法可能已经在有限的参数区域中对某些生产设置有用。为了改善最新的技术,机器学习算法需要降低他们能够检测信号并将其有效性扩展到参数空间区域的虚假警报率,在这些区域中,建模的搜索在计算上很昂贵。根据我们的发现,我们汇编了我们认为,将机器学习搜索提升到重力波信号检测中的宝贵工具,我们认为这是最重要的研究领域。
translated by 谷歌翻译